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Chapter 1

Introduction

The lectures and discussions will expose you to ecological and evolutionary theory and empir-
ical support for these theories. The overall purpose of these learning modules are to reinforce
these concepts by giving you hands on experience with methods used by researchers. For
the experimental components, we will make use of existing data from experimental and nat-
ural populations. Thus the focus of the modules is less about skills in data collection more
about designing experiments that test hypotheses and how to analyze data that has been
collected. For the theoretical modules, the purpose is to go from a question, to potential
answers (hypotheses), to a mathematical expression that are used to derive predictions that
can then be tested with experiments.

Both of these goals involve the use of the computer. However, this is not a computer science
course, so we will learn to use the computer as a tool, but nothing more.

1.1 General Approach and Data

The data we will use for the empirical work comes from a species that has been used exten-
sively to address questions in evolutionary ecology, the Trinidadian guppy (Poecilia retic-
ulata). Guppies inhabit streams and rivers throughout the Caribbean island of Trinidad
and occur along gradients of predation intensity. These gradients occur along the southern
and northern slopes of the Northern Range Mountains. The Northern Range Mountains of
Trinidad offers a natural laboratory for studying interactions between ecology and evolu-
tion. The rivers draining these mountains flow over steep gradients punctuated by waterfalls
that create distinct fish communities above and below waterfall barriers. Species diversity
decreases upstream as waterfalls block the upstream dispersal of some fish species. The suc-
cession of communities is repeated in many, parallel drainages, providing researchers with
natural replicates of the evolutionary process.

These streams also offer the opportunity of performing experimental studies of evolution
because rivers can be treated like giant test tubes, as fish can be introduced into portions
of stream bracketed by waterfalls to create in situ experiments (Endler 1978; 1980). Down-
stream guppies co-occur with a diversity of predators, which prey on the adult fish (high
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Figure 1.1: Barrier waterfall. Credit: Joshua Goldberg

predation, or HP). Waterfalls often exclude predators but not guppies, so when guppies are
found above waterfalls they have greatly reduced predation risk and increased life expectancy
(low predation, or LP). Hart’s killifish, Rivulus hartii, the only other fish found in many of
these localities, rarely preys on guppies and tends to focus on the small, immature size classes
(Haskins et al. 1961; Endler 1978). In some headwater streams, the killifish is the only fish
species present because they are capable of overland travel on rainy nights (killifish only, or
KO localities). Population genetic analyses reveal that at least some of these rivers repre-
sent independent replicates of the evolution of guppies adapted to HP and LP environments
(Alexander, et al. 2006) and that LP and HP populations are more genetically distinct than
expected under migration-drift equilibrium (Barson et al. 2009).

Figure 1.2: A predator of guppies, *Crenicichla alta*. Credit: Unknown

Guppies adapted to HP environments mature at an earlier age, devote more resources to
reproduction, produce more offspring per brood and produce significantly smaller offspring
than LP guppies (Reznick and Endler 1982; Reznick et al. 1996). All of these differences
are consistent across replicate HP-LP comparisons in multiple watersheds, and are also con-
sistent with predictions derived from theory that models how life histories should evolve in
response to selective predation on juveniles (LP environments) versus adults (HP environ-
ments) (Gadgil and Bossert 1970; Law 1979; Michod 1979; Charlesworth 1994). HP and
LP guppies also differ in male coloration (Endler 1978), courtship behaviour (Houde 1997),
schooling behaviour (Seghers 1974; Seghers and Magurran 1995), morphology (Langerhans
and DeWitt 2004), swimming performance (Ghalambor et al. 2004), and diet (Zandona et
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al. 2011). Male coloration evolves in response to the combined, conflicting influences of
natural and sexual selection (Endler 1978; Endler 1980). Laboratory studies confirm that
the differences in life histories, coloration, behaviour and body shape have a genetic ba-
sis (Endler 1980; Reznick 1982; Reznick and Bryga 1996; O’Steen et al. 2002). Genetic
diversity is consistently greater in the higher-order streams than in the headwaters. This
pattern, combined with the observation that guppies periodically invade or are extirpated
from headwaters implies a dynamic process of invasion of and adaptation to low predation
environments.

High Predation life history Low Predation life history

A fast life history A slow life history
(live fast, die young) (live slow, live long)

Figure 1.3: Life history differences between HP and LP guppies. Credit: Unknown

One of the really neat aspects of guppies that sets them apart from other organisms is
that we can study them in natural habitats using comparative analyses, in artificial streams
(mesocosms), and in the laboratory. They also have relative short generation times (~5
months). There are few other organisms that can be studied across these three levels of
realism.

Moreover, because guppies occur in most but not all habitats on the island, we can exploit
the presence of barrier waterfalls to perform experimental studies of evolution in natural pop-
ulations. We can manipulate the mortality risks of guppies by transplanting them from high
predation localities below barrier waterfalls, into previously guppy-free portions of streams
above barrier waterfalls. In this way, we can simulate a natural invasion. Introduced gup-
pies evolve delayed maturation and reduced reproductive allocation, as seen in natural LP
communities. In previous experimental introductions, male traits evolved in four years or
less. Our inferences that guppies had evolved were derived from laboratory experiments
performed on the laboratory-reared grandchildren of wild-caught parents collected from the



introduction sites and the ancestral HP sites. Other attributes of guppies, including be-
havior, also evolved rapidly. These results argue that the presence or absence of predators
imposes intense selection on life histories and other features of guppy phenotypes.

Mark-recapture studies on natural populations support the role of predators in shaping
guppy evolution, but at the same time suggest that resource availability is important. HP
guppies experience substantially higher mortality rates than LP guppies, which suggests
that predator-induced mortality is a candidate cause for the evolution of the HP phenotype.
However, guppy populations in low predation sites tend to have higher population densities,
slower individual growth rates and size distributions shifted towards larger fish. These dif-
ferences in population structure are attributable in part to demography: HP guppies have
higher birth and death rates. They are also attributable to evolved differences in life histo-
ries: LP guppies mature at a later age and have lower birth rates. Thus, removal of predators
causes not only changes in the age-specific probabilities of death, but also leads to increased
population sizes and lower resource availability in LP locations.

We will be working directly with much of the data used to test various hypotheses about
population dynamics, evolution in guppy populations, and coexistence with killifish.

1.2 How to do science

Science always starts with a question. For example, “How does predation influence how
fast organisms grow?” The next step in the process is to develop a Biological Hypothesis. A
biological hypothesis is a possible answer to the question, but ought not to be a simple answer
such as “It should make it increase”. There needs to be an explanation for why. For example,
one hypothesis in life history theory suggests that organisms that live with predators should
grow faster than organisms without predators because larger size can reduce the risk of
predation. This hypothesis makes the prediction that if we can measure the growth of
closely related organisms that live with and without predators, then the ones that live with
predators should have higher growth rates. Yet, this may not be the only hypothesis that
makes that same prediction. For example, another hypothesis may say that if fecundity
is positively related to size, then species that are subject to high rates of predation grow
quickly because it allows them have more offspring before they are killed by predators.
Both hypotheses make the same prediction and so it is often important to develop further
predictions that can discriminate between the two.

Once you have your biological hypotheses and predictions, then you can design an experiment
that can test the prediction. In the next section, we will do this using growth data on
guppies from high and low predation populations in artificial streams over a 28-day period.
There are 16 artificial streams that represent a common environment—everything is the same
between the artificial streams besides the fish that are in them. There are two factors in
the experiment, each with two levels. The first factor is the predation regime of origin (LP
or HP). The second factor is the number of fish in the artificial stream. This also has two
levels (12 or 24). Each combination of predation regime and density is equally represented
in the data. This type of experiment is called a 2 x 2 factorial design and is a workhorse in



experimental biology. You decide that you will measure all the fish before they go into the
experiment and measure them again after 28 days to measure how much they grew. How do
you go about objectively saying whether you accept or reject your biological hypothesis?

Figure 1.4: Artifical streams (mesocosms) in Trinidad.

The objective method for deciding whether you accept or reject your hypothesis is the realm
of statistics. There are numerous types of statistics out there. Yet, in almost every case, a
major goal of statistics is to provide methods that allow us to accept or reject hypotheses. Yet
the relationship between testing a hypothesis in statistics and in biology are not equivalent.
The distinction is often glossed over and so it is worth spending a moment on this.

Hypotheses in statistics come in two flavors. The first is the null hypothesis, often denoted
H,. The second flavor is the alternative hypothesis, H,. The null hypothesis in statistics
is the hypothesis of no effect. For example, there is not an association between predation
and growth. The alternative hypothesis is that there is an association between predation
and growth. The subtlety is that the biological hypothesis is not that there should be an
association between predation and growth, rather this is the prediction from the biological
hypothesis. So statistics test predictions of biological hypotheses. The other distinction is
that the goal of statistics is not to test the prediction per se, but the focus is on rejecting the
null hypotheses, the one of no effect. This may seem a bit odd, but the consequence of this
is that we never can say that the alternative hypothesis is true, only that the null is false or
rejected. This, in turn, has important consequences for our conclusions from the analyses.
For example, if we reject the null hypothesis of no effect, then we can say the results are
consistent with our biological hypothesis. However, we cannot say our hypothesis is true.
Because, remember, there may be other hypotheses that yield similar predictions. Truth,
then in science, comes from eliminating alternative biological hypotheses. Once all others
have been eliminated, then we arrive at the truth.

Throughout this course, we will be using several types of statistical tests, but none more
than linear regression and its variations. Below we will go through what linear regression is
all about. We will then test the predictions from the growth/predation hypothesis using the
experimental design above.
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Figure 1.5: A 2 x 2 factorial design with LP and HP guppies at two densities in meso-
cosms. Values inside the cells represent the number of articial streams (mesocosms) with
that treatment combination. Credit: Unknown



Chapter 2

Introduction to Data Analysis

2.1 Approach

An important part of Evolutionary and Ecology is to seek predictable patterns and to under-
stand their underlying causes. Much of this process involves quantitative work: collecting,
analyzing and presenting data in a clear and organized way, with the goal to discover fun-
damental insights into how nature works. This laboratory focuses on the mechanics of this
process: how to chose a statistical method, organize data, to follow a workflow, and to
present findings that are evidence-based, will have impact, and will also be reproducible and
verifiable.

This introductory section stresses three main points about the general approach to data
analysis: data need to be organized; the analysis should follow a well-structured work flow;
and the overall process needs to be reproducible. To accomplish this, we will be using
program R and R Studio.

Data Organization

The key point here is that data and analyses should be organized so that you can find your
way to them at a later time. It is best to lay out a set of folders in a logical way, and to
think about how you will do this before you start. One well-tested system is to make a set
of folders or directories with a consistent and hierarchical structure. For the laboratory in
this course, it would make sense to have a separate folder for each laboratory, then within
that folder have three standard folders: a Data Folder that contains your Excel workbooks
and .csv files; a Results Folder with your R Scripts, and a Documents Folder with your
written reports or results, for example your worksheets or lab report.

Work Flow

Data analysis tends to be easier and less fraught with error if you develop a consistent work
flow. In general, it is best think of the work flow to have three parts. For empirical work,
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visualize your data. Before you do any analyses, look at your data by making figures. This
will allow you detect errors, but most important to think about patterns and to gain some
intuitive ideas about what is “going on” in your data. Second fit and examine a statistical
model. The main point here is to find a model to test your hypothesis or to support one or
more ideas, but especially to evaluate carefully whether the data meet the assumptions of
model. In most cases in statistics there is a series of well-established diagnostic check-offs to
help you to find your way through this process. Third, interpret the model; this means to
evaluate the salient patterns that the analysis reveals in the data and, most important, to
think about the biological significance of the result.

Reproducible Analysis

The third point is that your work must be reproducible. Standards now demand that you
be able to document how you obtained your findings. The key point about reproducibility is
that you make an electronic record of every step. Start with an archival copy of your data -
a “good” copy (for example in a .csv file) that you do not edit. Do all of your analysis using
a script. Make your script permanent, repeatable, annotated, shareable, and archived.

The idea is that it is critical that others can understand and repeat the analyses. But you
will find this approach extremely important if you find an error in your data (you can simply
rerun the script with the correction), or if you need to do a similar analysis later.

A good habit is to react with alarm when you start to manipulate data by hand (for example,
in an Excel Workbook); every time you do that you generate an opportunity for cryptic error,
or at best a very tedious time if you need to repeat the work. Aim to move your analyses to
the script stage as quickly as possible.

Goals for this section

The goal of this section is to get organized for analyzing and interpreting data in Evolutionary
and Ecology. First, we do this by getting R and RStudio set up, by doing some preliminary
work with RStudio or R, and then by working on the worksheet itself.

This module therefore has three parts:

Part 1. Set things up: install R and RStudio on your computer and organize your directories
for the course. For the lab, we will be working in one of the computer labs. This section is
for you to set up R and RStudio on your personal computer.

Part 2. Work with R (or RStudio). Follow the instructions on this handout to execute
a few commands on R using the Console Window of R or RStudio: execute some simple
expressions, call some functions, and to use the Data Window of RStudio to become familiar
with a few of the important data structures in R.

Part 3. Learn basic linear models. In this section, I will introduce you to the basics of a
linear model, which is the foundation for much of the analyses we will be doing latter on.
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It is important to get these introductory skill down as we will build on them considerably
throughout the labs. Please ask questions if something does not make sense.

2.2 PARTII

Set things up: install R and RStudio and organize your work directories. You should do this
before class and come see me if you have trouble. There is also lots of help online. Just type
your question and follow it with “in R”.

1. Install R on your computer.

Navigate to “cran.r-project.org” and follow the instructions for downloading for Mac, Win-
dows, or Linux (Figure 1).

bookdown: Authoring 8¢ X )/ (R The RA X @ - x
< C | @ secure | htpsy/cranr-project.org s
51 Apps B PandoraRadio-List: 3 ScholarOne Manuscr (@) Ronald D. Bassar W) Weebly - Dashboard [ Biology [ Glow [} Oracle PeopleSoft Sic [ Especially for Facult Seminar Sign Upsxis: > Login|Egencia @) Dashboard [} Welcome to ahealthy [ Log Lunch Reservat »

The Comprehensive R Archive Network

Pownload and Install R
[Precompiled binary distributions of the base system and contributed packages. Windows and Mac users most likely want one of these versions of R:
« Download R for Linux

« Download R for (Mac) 0S X
« Download R fo

IR is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.

Source Code for all Platforms

}{{‘jflm [Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The sources have to be compiled before you can use them.
R Homepsge I£ you do not know what this means, you probably do not want to do it!
The R Joumal

o The latest release (2018-07-02, Feather Spray) R-3.5.Ltar gz, read what's new in the latest version

« Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).

« Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes before filing corresponding feature requests o bug

reports.
Documentation « Source code of older versions of R is available here.
Manuals

FAQs « Contributed extension packages

Contributed

[Questions About R

« If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send
an email

What are R and CRAN?

Ris ‘GNU'S", a freely available language and environment for statistical computing and graphics which provides a wide variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series
analysis, classification, clustering, etc. Please consult the R project homepage for further information.

CRAN is a network of fip and web servers around the world that store identical, up-to-date. versions of code and documentation for R. Please use the CRAN mirror nearest to you to minimize network load.

Submitting to CRAN
Note: CRAN submission will be offline from Sep 1, 2018 to Sep 9, 2018 (CRAN team vacation and maintainance work).

To “submit” a package to CRAN, check that your submission meets the CRAN Repository, Policy, and then use the web form

dozen people

Note that we generally do not accept submissions of precompiled binaries due to security reasons. All binary distribution listed above are compiled by sclected maintainers, who are in charge for all binaries of their platform,
respectively

Figure 2.1: The cran R web page where you can find the links to download the latest version

of R.

2. Install RStudio

Navigate to “www.rstudio.com/products/rstudio/download/”. You will be given the option
to download several versions of RStudio. You want the free one.
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2.3 PART II

Working with RStudio or R and some examples of R commands and data structures.

RStudio is a “wrapper” function that runs R: it organizes your workspace on the screen so
that it is easy to see your work - the comments below assume you are working with RStudio.
If you prefer to work directly with R, start with step 1 and skip step 2; to work with RStudio,
start with step 2. Either way you can quickly set up a Console Window and a text file or
window for your script. RStudio also has two additional windows that can be useful.

1. Working directly with R: Click on the R icon

You will see the Console Window. Use File/New Document to bring up a text tile where you
can write, run and save your R scripts. Plot windows will appear when you make plots (you
can copy these and paste them into Word documents), and you can view objects (including
data) by entering them by name into the Console Window.

2. Working in RStudio: Click on the RStudio icon

You will see the RStudio Screen with 3 windows: Console window (left), Script Window
(upper left), Data Window (upper right), and a window (lower right) with a series of tabs:
most important for this worksheet are the Help and Plot Tabs}

3. Preliminary work in the Console Window in RStudio

The console window is where you can type in and execute commands (see Figure 2), and
where the results of command executions are displayed. This is the best place to try out
some R commands to see what they do. But - and this is very important! - once you start to
do analyses, always use the Script Window, where you can develop your analyses and build
a permanent documented record of your work. More on this later. Although we start with
the Console Window, you should aim to do all of your work using the script window. The
logic is that your aim is to minimize the work that you do by hand and which therefore has
no permanent record.

You can type R commands into the Console Window; hit Return and R will execute the
command and return the result.

An excellent tutorial site for basic R is at: http://tryr.codeschool.com; it is worth visiting
later.

For this module, the section below covers some of the kinds of expressions, functions and
data structures you will use in the worksheets.

Let’s start by using the console in RStudio like a calculator.

Start by typing the following into the console and then hit the “Enter” key:
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© s

- x
File Edt Code View Plots Sesion Buld Debug Profil Tools Help
-l )~ addins - &) Project: (None)
console Environmen t | bistory
% [ mponvstaset - | it -
R version 3.4.1 (2017-06-30) -- "single candle” 8 "
Copyright (C) 2017 The R Foundation for statistical Computing Global Environment +

platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type "Ticense()' or 'Ticence()’ for distribution details.

® is a collaborative project with many contributors.

Type "contributors()’ for more information and

“Citation()’ on how to cite R or R packages in publications.
Type "demo()’ for some demos, 'help()’ for on-Tine help, or
“help.start()’ for an HTML browser interface to help.

Type 'qQ)" to quit R.

Files  Plots | Packages Help Viewer

= Bxport

B AwDY L

Figure 2.2: The RStudio application. The left panel is called the console.

## [1] 2

First, anything in gray in this tutorial represents what you type in. The stuff after the

double hashs (#+#) is what RStudio should return. Note that in RStudio the ##’s are not
there.

What happens if RStudio does not return the answer, but instead a plus appears? For
example, type in “1 +7. This situation, RStudio returns a “4”. This means that the line

of code you are writing is incomplete. Simply type another “1” on this new line. RStudio
returns the answer.

Let’s try some others:

#Multiplication
2 x 4

## [1] 8

#Division
3/8
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## [1] 0.375

#Subtraction
10.5 - 3.6

## (1] 6.9

#Powers
1073

## [1] 1000

#Logarithm (Natural)
log(10)

## [1] 2.302585

#Logarithm (base 10)
log10(10)

## [1] 1

#Trigonometric
sin(pi)

## [1] 1.224606e-16

#Logical
3<10

## [1] TRUE

Most of this is pretty straightforward, but there are a few things to note. First, if you know
logarithms you might be puzzled that the natural logarithm is “log” and not “In”, as in some
other programs. This is just the way R works.

The last example is an example of a logical question: “is 3 less than 10”. There are many
other logical questions that can be asked. For example ‘=="means “are things equal”. We
will see other examples of this and how they are used later.

The log, logl0, and sin examples are also examples of what are called functions. Anything in
R with text followed by something within parentheses is a function. The part that it inside
the parentheses are called the argument. R uses functions to do all kinds of things for you.
That is there is some behind the scenes stuff going on to calculate log(10). Some functions
have single arguments, but others may have 2 or more. Each argument is separated by a
comma. A very useful one is:

15



seq(from=0,to=10,by=1)

# [1] 0 1 2 3 4 5 6 7 8 910

which returns a sequence of numbers from 0 to 10. You could alter this to read:

seq(from=0,t0=10,by=0.5)

## [1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.6 6.0 6.5 7.0
## [16] 7.5 8.0 8.5 9.0 9.5 10.0

which gives the same range of numbers, but every 0.5 instead.

We can also take these sequences and give them a name. To name something in R simply
write:

x <- seq(from=0,to=10,by=1)

x is what is called an object. Now if I type ‘x’ into the console, then it should return the
sequence

X

# [1] 0 1 2 3 4 5 6 7 8 910

You can manipulate objects as you would numbers. For example:
x <- b

y <- 10
X +y

## [1] 15

You can also see that ‘x” and ‘y’ show up in the box at the upper right of your screen, the

“Global Environment”. This is R’s memory.
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Console
R version 3.4.1 (2017-06-30) -- "single candle”

Copyright (C) 2017 The r Foundation for statistical Computing
Platform: x86_64-wod-mingw32,/ 64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome To redistribute it under certain conditions.
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Figure 2.3: Click on the icon to open a new script.

4. Your first script

So far we have been using the console to learn how to use R like a giant calculator. Now, we
will do this but we want to keep a record of what we have done. Doing so involves writing
scripts. We also want to learn how to organize our workspace.

First, move the mouse to the upper left of the screen (as in Figure 3) and open a new script.

Your screen should now look similar to Figure 4, with four sections on the screen. The
console has moved down to the lower left and a new blank script appears in the upper left.

Within the new script, you can type in the commands as we had done before. To run the
line of code, place the cursor on the line and hit the ‘run’ key (Figure 5) or “Ctrl + Enter”.

The real power of the scripts is that you can type stuff into it, run it, and save the code
for later use, modification, or to share with others. Let’s try this. In the script, type the
following;:

x <- 5
y <= 10
z<-x*xy/ x2

Then press the save icon as in Figure 6.

You will be prompted to select a location on your computer to save the script. Start by
setting up your directory for the laboratory in this module.

The aim here is to make sure that you can locate your work easily-organization is an impor-
tant part of reproducibility. The most important person to understand your work at a later
time is you! For example, you will need to refer to your scripts when are preparing your
write-ups, and good directory structure will make this process feasible.
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Figure 2.4: Computer screen with new blank script opened.

Use an organization structure that works for you. One strategy suggested in the literature
(Noble 2009) is to make an overall directory for all your work in the course with a separate
subdirectory for each separate project (for example, each worksheet). Within each project
subdirectory, have the following three directories:

-A Data directory - contains data files including Excel workbook and .csv files
-A Results directory - contains the R scripts that read in and analyze the .csv files
-A Documents directory - contains written documents that summarize your work.

Go ahead and set up a location for you to store your work now. For now, create a folder
in the Documents folder called ‘Ecology’. Then within that one create another folder called
“Lab 1”. You can then save this script within this folder with the name “My first script”.

Congratulations, you have written your first script!

Now, what we want to do is to setup a script so that we can begin analyzing data and making
figures. To do this, open a new script. There are a couple of things that should go at the
top of just about every script you will write. The first is:

rm(list=1s())

rm(list=Is()) is a function that clears R’s brain. Each time you begin a new session, you
want to make sure that there are not any left overs from a previous working session.
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Figure 2.5: Click the 'Run’ icon to run the line of code.
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Figure 2.6: Save the script.

setwd("~/Evolutionary Ecology/Lab 1")
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The second thing to write is a line of code that tells R where the working directory is on the
computer. The working directory is the default location that R will look for stuff it needs.
For now, let’s make the same folder we created. Type:

You probably have guessed by now that ‘setwd()’ is a function, and the bit within the
parentheses is the argument that tells R where the directory is located.

Now, let’s save the script. Call it ‘Lab 1 script’ Once you are done with this, your script
should look just like figure 2.7.

This all we need to do for now. We will start with this with every script that we write in



) RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help

gl-l2- 8 3 5 - Addins -

2] My first script.R 29 Lab 2 script.R*

41 | [DSourceonsave | Q A | i - ~#Run | (2% | _# Source
1 rm(1ist=T1s())
2 setwd("~/Ecology/Lab 2")
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Figure 2.7: Lab 1 script (so far).

2.4 PART III. Linear regression and linear models

Linear regression is an important statistical tool to have in your toolkit. It is mostly used
to analyze whether there is a causal relationship between two continuous variable (i.e. real
numbers with with decimal places like heights, weights, etc). Learning regression is not only
an important tool in and of itself, but is also can be used for other types of analyses when
one or more of the variables are categorical (i.e. red, blue, or orange). There are many types
of regression, but the simplest is simple linear regression, which is where we will start.

We will start by testing the biological hypothesis that fish growth declines with increased
body size. This is a very simple hypothesis, but the purpose here is to focus on the mechanics
of the statistics. Later, we will use this same data to test a more biologically interesting
hypothesis.

Background to simple linear regression

Did you ever wonder why the formula for a straight line was drummed into your head in K-
12 education and why we often continue to do so in first-year and sophomore level classes?
It because it is the foundation for many many mathematical expressions, particularly in
statistics. We can write the formula for a straight line as:

y=oa+fz (2.1)

There are two variables and two parameters.The response variable is y and the predictor
variable is . The two parameters are o and 3. The intercept of the line is a and the slope
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of the line is 3. The variables come from the data and we will try to fit the line to the data
to yield estimates of the parameters.

Let’s look at some data, which shows the somatic growth (in mm) of guppies over a 28-day
period in artificial streams. First get the data,

rm(list=1s())
setwd("~/Evolutionary Ecology/Lab 1")

data <- read.csv("./Data/mesodata.csv")

head(data)

#it spp block channel guppy.phenotype density color.combo initial.length
## 1 guppy 1 1 HP low oY 11.30
## 2 guppy 1 1 HP low OR 15.30
## 3 guppy 1 1 HP low RY 18.04
## 4 guppy 1 1 HP low RB 17.20
## 5 guppy 1 1 HP low RR 21.50
## 6 guppy 1 1 HP low RO 22.84
##  final.length growth

## 1 16.26 4.96

## 2 19.19 3.89

## 3 20.95 2.91

## 4 21.21 4.01

## 5 23.01 1.51

## 6 23.93 1.09

Each row of the data is one for a fish that was in the experiment. There are a fair number
of columns there, but the two we are presently concerned with are the “initial.length” and
“growth” columns. The initial.length is the size (in mm) at the start of the experiment and
“growth” is how much they changed in length over the experiment. How do we measure the
length of a fish? We will use standard length (SL), which is a measure from the tip of the
snout to the location where the fin rays contact the musculature in the tail.

Figure 2.8: Standard length (SL)

The initial.length is our  and growth is our y. It is always important to start everything
you do by plotting the data. There is no substitute for looking directly at the data. We can
plot “growth” against “initial.length”
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plot(data$initial.length,data$growth,xlab="'Initial Length (mm)',ylab='Growth (mm)')
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Figure 2.9: Growth versus initial length in the experiment.

In the code for the plot, the name of the data file (data), followed by ‘$’, and the name of
the column lets us select the data in that column. For example, to get all the initial length
data:

data$initial.length

## (1] 11.30 15.30 18.04 17.20 21.50 22.84 19.53 10.62 17.81 19.11 16.04 19.51
## [13] 21.09 22.27 11.24 12.39 13.03 14.68 12.14 13.15 14.89 16.18 16.89 17.39
## [25] 18.45 18.08 20.73 23.01 20.97 24.80 18.95 14.51 14.24 13.80 15.07 14.49
## [37] 16.82 12.88 16.45 18.20 19.05 20.48 21.93 20.46 21.87 23.11 21.55 13.52
## [49] 14.01 16.15 15.62 13.45 15.99 18.94 17.63 18.34 19.53 21.25 23.58 22.99
## [61] 12.36 12.78 12.27 13.20 13.05 16.87 19.65 15.89 15.17 17.41 18.31 21.67
## [73] 20.75 23.37 23.07 21.26 23.86 13.14 17.87 19.13 18.54 21.86 12.44 15.51
## [85] 14.50 18.63 21.18 21.68 23.05 10.72 14.41 15.99 16.50 17.08 19.66 19.40
## [97] 19.35 19.97 22.32 21.29 21.31 11.55 14.47 15.89 18.78 21.54 21.26 11.82
## [109] 12.01 13.09 17.67 18.47 13.81 21.53 16.84 14.87 17.02 17.57 20.58 19.79
## [121] 21.55 21.69 23.05 12.82 12.93 14.19 15.73 19.00 21.23 23.43 20.86
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What we want to get is an objective set of parameters from the data that are the best
possible estimates for these data. In modern statistics, the convention is to use the mazimum
likelthood estimates of the parameters. In other words, given the data and assuming the
relationship is linear, we want to find the values of the slope and the intercept that are the
most likely given the data.

For our simple linear regression, we have several assumptions.

1) The variance in y is constant (i.e. the variance does not change as y gets larger).

2) The predictor variable z (initial.length) is measured without error.

3) The difference between a measured value of y and the value predicted by the model for
the same value of x is called a residual. These are the green lines in the figure below.

4) Residuals are measured on the scale of y.

5) The residuals are normally distributed.
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Figure 2.10: Growth versus initial length in the experiment with the predicted relationship
in red and residuals in green.

If the above is true, then the maximum likelihood is given by the methods of least squares.
This will not always be the case and we will see later in the class other situations. Although
this is not a statistics class, least squares is among the most straightforward maximum
likelihood estimator to understand, so let’s take a quick look at it.
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The residuals are the vertical distances between the data (open circles) and the red line.
Each residual is a distance, d, and the value predicted by the model, ¥, evaluated at the
appropriate value of x:

d=y—7 (2.2)
Now replace the predicted value, y by its formula: ¥ = a + Sz to get:
d=y—a— [z (2.3)

Our measure of fit is the sum of the squared distance (residual).

dod=) (y—a—pz) (24)

The sum of the raw residuals will always be zero, but the sum of their squares is not. The
values of o and [ that minimize the sum of the differences between the predicted values and
the data, d, provides the best fit to the data. Another way to think about this is to imagine
rotating the predicted line around

500 1000 1500 2000 2500

sum of squared residuals

I I I I I
-0.5 -0.4 -0.3 -0.2 -0.1

slope (B)

Figure 2.11: Sum of the squared residuals versus the slope.
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The sum of the squared residuals is also called the sum of squared errors or the SSE. If
you have taken derivative calculus, you know that you can find the point of the curve where
the derivative 223 (slope of the line) is equal to zero, which is at the minimum point in
the curve. Fortunately, we do not need to do the calculus as these relationships are well
understood. It turns out all we need to find the maximum likelihood estimate of the slope is
three quantities that are closely related to the variance and covariances of the two variables.

These are:

SSY =3 (y—p)? (2.5)
SSX =) (z—1x)? (2.6)

SSXY =) (y—i)(z—17) (2.7)

The bar over the variables is the mean of the variable. The first two are the sums of the
squared deviations of each of the variables from their means and the second is sum of the
products of the deviations from the mean of the two variables. The maximum likelihood
estimate of the slope is then simply:

_ SSXY
88X

(2.8)

which is the covariance of x and y divided by the variance in x. This may seem familiar.
For example, the heritability of a trait is the slope of the line between the mean offspring
values and the mid-parent values. This slope is precisely what you are calculating here:
the covariance between the mean offspring values and the mid-parent values divided by the
phenotypic variance.

Conducting a simple linear regression
Let’s put the background to linear regression aside and focus on actually using the computer

to implement this and how to interpret the results. R has several functions that will run a
linear regression. We will stick with “glm()” for now.

To estimate the equation of the best fit line between growth and the initial.length, type:

mod <- glm(growth ~ 1 + initial.length,data=data)

The “1” means to include an intercept parameter. We have saved the output as ‘mod’. Type
‘mod’ to view the output.
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mod

##

## Call: glm(formula = growth ~ 1 + initial.length, data = data)
##

## Coefficients:

#it (Intercept) initial.length

#i# 7.5345 -0.3118

##

## Degrees of Freedom: 128 Total (i.e. Null); 127 Residual
## (2 observations deleted due to missingness)

## Null Deviance: 299.4

## Residual Deviance: 136.7 AIC: 379.6

This tells us that the estimate for the y-intercept is 7.5345 and the estimate for the slope is
-0.3118. R uses slightly different language here than we have been using, but the “Residual
Deviance” is the sum of the squared residuals or the SSE. We actually want a little more
information than this from the model.

summary (mod)

##

## Call:

## glm(formula = growth ~ 1 + initial.length, data = data)
##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.9606 -0.7276 -0.1360 0.6771 3.6668

##

## Coefficients:

#i# Estimate Std. Error t value Pr(>|tl)

## (Intercept) 7.53449 0.45638 16.51 <2e-16 *x*x

## initial.length -0.31180 0.02536 -12.29 <2e-16 *xx

#H -

## Signif. codes: O '**x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for gaussian family taken to be 1.076358)
##

#it Null deviance: 299.42 on 128 degrees of freedom

## Residual deviance: 136.70 on 127 degrees of freedom

## (2 observations deleted due to missingness)

## AIC: 379.56

##

## Number of Fisher Scoring iterations: 2
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Gives us a bit more information. Now in addition to the estimates for each parameter, we
also have a standard error, a t-value, and p-value. The standard error is a measure of how
good our estimate of the parameter actually is. Smaller standard errors are better estimates
than larger ones. The t-value is the parameter estimate divided by the standard error, which
in effect says if the estimate is much larger than our error, then we can have some confidence
that we are doing a good job estimating the parameter. This also gives us the Residual
Deviance (SSE). The other value of interest here is the “Dispersion Parameter for the
Gaussian Family”. This values is the residual variance, i.e. the SSFE divided by the number
of degrees of freedom (127). Yet, one question remains: How good is good enough?

Tests of the statistical hypotheses

The biological hypothesis we are addressing is whether fish growth declines with increased
body size. So far, we have just been asking about whether there is a relationship between
initial size and growth. We used regression to come up with the parameters for the slope
of a line that describes the relationship between these two variables. How confident are we
that the relationship we are estimating reflects the truth? The statistical null hypothesis is
one of no effect, which means that the null says that the slope should be 0. The alternative
is that it is not 0. Recall from our discussion above is that all we can do with the statistics
is to reject or fail to reject the null.

Ultimately, what we want to have some probability of rejecting the null hypothesis. Because
our statement about the null will ultimately have a probability attached to it, we need talk
about probability distributions. For almost all of the work we will do in this class the analyses
rely upon a t-distribution. A t-distribution is a probability distribution that is bell-shaped.

The width of the t-distribution depends on the degrees of freedom. Degrees of freedom are a
difficult concept to grasp in some analyses. Perhaps the simplest way to explain them is the
number of independent pieces of information that went into calculating the estimate. For
our data we have 129 independent data points. In regression like this, the number of degrees
of freedom is the total number of observations minus the number of parameters to estimate.
This gives us 127 degrees of freedom.

Now each of these distributions has the property that the area under the curve is equal to
1. Hence they are probability density distributions. The values along the x-axis are the
possible t-values. The areas to the right of any number tell us the probability of getting that
t-value or higher by chance. Likewise, the areas to the left of any t-value tell us the chance
of getting that t-value or lower solely due to chance. For us, our t-value of -12.29 is off the
chart to the left, meaning there is a very small probability of getting that value by chance
alone. The probability to the left of our t-value is the p-value. Technically, it is the one-sided
p-value. Students that have taken stats will know that to get the two-sided p-value, it is
twice this value. The p-value technically tells us the probability that we are rejecting a true
null hypothesis (Type I error). When this value is very small (usually less than 0.05), we
can be certain to reject the null in favor of the alternative. Our very low p-value gives us
confidence that we can reject the null hypothesis that there is not a relationship between
initial size and growth rate.
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Figure 2.12: A student t-distribution with 3 different degrees of freedom. The area under
each curve is 1 corresponding to all possible values of t.
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The reason why the degrees of freedom are important is that we need to have a higher t-value
to make conclusions when we have lower degrees of freedom. Thus, the less data you have
the larger the effect needs to be to be confident that the estimate is different from 0.

A note on probability levels. Keep in mind that statistical tests cannot tell us whether or
not our conclusions are correct, but instead give us the probability that we are wrong. Each
statistical test gives us the probability of falsely concluding that a difference exists, when in
reality there is no difference. The generally accepted significance level in scientific work is
5%. That means that 5% of the time we will conclude that differences exist when there really
is no difference. We can be more confident that our conclusions are correct when statistical
tests give us probability levels of 1% or lower. These probabilities are usually written like
this: p = 0.05 for a 5% chance of being wrong, p = 0.01 for a 1% chance of being wrong.

2.5 PART 1IV. Testing the hypothesis that predation
selects for higher growth rates

We are now in a position to test whether predation causes selection for and the evolution of
higher growth rates. Let’s look at the head of our data file again.

head(data)

#it spp block channel guppy.phenotype density color.combo initial.length
## 1 guppy 1 1 HP low 004 11.30
## 2 guppy 1 1 HP low OR 15.30
## 3 guppy 1 1 HP low RY 18.04
## 4 guppy 1 1 HP low RB 17.20
## 5 guppy 1 1 HP low RR 21.50
## 6 guppy 1 1 HP low RO 22.84
## final.length growth

## 1 16.26 4.96

## 2 19.19 3.89

## 3 20.95 2.91

## 4 21.21 4.01

## 5 23.01 1.51

## 6 23.93 1.09

There is a column called guppy.phenotype that is coded with LP or HP, for low predation
and high predation phenotypes, respectively. One of the powerful things about regression
is that it forms the basis for what are called general linear models. General linear models
allow us to include categorical predictors into an analysis alongside continuous ones. Let’s
try this using guppy.phenotype.
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mod <- glm(growth ~ 1 + initial.length + guppy.phenotype, data=data)
summary (mod)

##

## Call:

## glm(formula = growth ~ 1 + initial.length + guppy.phenotype,
## data = data)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.8774 -0.6722 -0.1758 0.6530 3.7479

##

## Coefficients:

#it Estimate Std. Error t value Pr(>|tl)

## (Intercept) 7.48372 0.45833 16.328 <2e-16 *x*x*
## initial.length -0.31443 0.02545 -12.355  <2e-16 **x
## guppy.phenotypelP 0.20193 0.18348 1.101 0.273

#t ——-

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## (Dispersion parameter for gaussian family taken to be 1.074571)
##

## Null deviance: 299.42 on 128 degrees of freedom

## Residual deviance: 135.40 on 126 degrees of freedom

## (2 observations deleted due to missingness)

## AIC: 380.33

##

## Number of Fisher Scoring iterations: 2

Now we have an additional line that says guppy.phenotypeLP. It has a parameter estimate,
standard error, t-value, and p-value, just like the others. The parameter itself has a value of
0.20193. But, how does R know what to do with the values in the guppy.phenotype column?
And why do they have a parameter? What does this mean? It turns out that R does not
use LP and HP directly. It changes HP to 0 and LP to 1. Let’s see how this works. Let’s
forget about size for the moment so that we are just dealing with guppy.phenotype. Our
new linear regression equation is:

y=a+ ¢p (2.9)

where p stands for phenotype of guppy and ¢ is the parameter for this variable. Now some
of the p’s are 0 and some are 1’s, corresponding to HP and LP, respectively. If p is 0 (HP),
then only « is being estimated. Hence a corresponds to HP fish. So now, the intercept
corresponds to the value for HP fish. If ¢ is 1 (LP), then we are estimating o + ¢. This is
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the value for LP fish. So ¢ tells us the difference between HP and LP. This is nice because
this is exactly what we want to test.

Let’s look back at our output. guppy.phenotypeLP means that, on average, we observed LP
guppies to have grown 0.20193 mm more than HP guppies. Do we have much confidence in
this difference? No, the p-value is 0.273. Here we failed to reject the null hypothesis that
this not a difference in the growth rates of HP and LP guppies. And hence, we failed to
find evidence to support the biological hypothesis that predation selects for higher growth
rates. Again, this does not mean that the hypothesis is not correct, just that we failed to
find evidence for it.

Often times we fail to reject the null (and find evidence for our biological hypothesis) because
there are other factors that impede us from seeing it. This is sometimes an experimental
design and statistical power issue. Other times, it is because the biological hypothesis is
conditioned upon certain circumstances. This conditioning often means that a more refined
biological hypothesis is needed. In lecture, we have talked about r and K-selection. There
were figures that showed how which genotype is fittest depends upon the density of individ-
uals in the population. The crossed lines are indicative of an interaction between the factors,
in this case between density and predation. An alternative hypothesis to the predation se-
lects for higher growth rates hypothesis is that growth rates depend on both predation and
resource availability. Organisms that live in locations with predators can grow fast because
they have high levels of resources and do not need to be efficient at gathering them. In
contrast, organisms that live without predators will have low resource availability and will
need to be efficient at resource acquisition. This predicts that high predation guppies should
grow well at low densities, but be worse growers at high densities. The opposite will be
true for low predation guppies. We can test this hypothesis using an interaction term in the
linear models.

mod <- glm(growth ~ 1 + initial.length + density +
guppy . phenotype + guppy.phenotype:density , data=data)
summary (mod)

##

## Call:

## glm(formula = growth ~ 1 + initial.length + density + guppy.phenotype +
#i# guppy . phenotype:density, data = data)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.52045 -0.48789 0.00806  0.42893 2.33303

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 7.06240 0.33722 20.943 < 2e-16 **x
## initial.length -0.32151 0.01854 -17.345 < 2e-16 *xx
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##
#it
#it
##
#i#
#i#
#it
#it
##
#it
#i#
##
#it
##

densitylow 1.91801 0.20458
guppy . phenotypeLP 0.40076 0.16095
densitylow:guppy.phenotypelLP -0.88507 0.28777

Signif. codes: O 'x*xx' 0.001 '*x*x' 0.01 'x' 0.05
(Dispersion parameter for gaussian family taken
Null deviance: 299.415 on 128 degrees of f
Residual deviance: 70.587 on 124 degrees of f
(2 observations deleted due to missingness)

AIC: 300.3

Number of Fisher Scoring iterations: 2

9.375 4.1le-16 **x*
2.490 0.01410 *
-3.076 0.00259 *xx
.01t 1
to be 0.5692476)

reedom
reedom

Well, now there you go. Here there is a significant interaction between guppy.phenotype and
density (which is a proxy for resource availability), meaning that how predation influences
growth rate depends on the density (i.e. resource availability). Let’s plot the means of this
to look to see what it looks like.

growth (mm)

A HP
e LP

65 70 75 80 85 9.0 95

Phenotype

low density high density

Figure 2.13: Somatic growth in the factorial experiment.
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Now, why does this work? Again, lets go back to our equation for the regression and add two
more terms. One for density (low or high) and one for the interaction between phenotype
and density. Again, we will ignore initial size for this explanation.

Y=o+ ¢p+dd—+pd (2.10)

Now, assume again that a p of 0 stands for HP and a p of 1 is for LP. Additionally, a d of
1 stands for low density and a d of 0 stands for high density. Now there are more than two
combinations of possibilities. Let’s start with the case for when p and d are both zero. This
results in:

o (2.11)

when p and d are zero this is for HP fish at high densities. And so the a parameter is for
HP at high density. As before, we can add in the ¢.

o+ ¢p (2.12)

This results in a + ¢ or the value for LP at high density. It is at high density because we
did not change d. Now, instead of p, let’s change d from 0 to 1, which is for low density.

a+od (2.13)

Now the results is a + 9, which is the value for HP at low density. So far, we have three
combinations. The final one is to change both p and d to 1’s from 0. This is then for LP at
low density and is:

a+ ¢p + 0d + tpd (2.14)

Thus, the value for LP at low density is a + ¢ + & + ¢. The interpretation of ¢ is that
it expresses how much the pattern between the two phenotypes depends on density. Take
another look at the plot above. At low density, HP, has higher growth, but at high density,
LP have higher growth. Another way to look at this is that the interaction tells you how
much the two lines cross in the figure. If the relative growth rates of the two phenotypes did
not depend on density, then the lines would be parallel.

Because the the interaction is less than 0.05, we reject the null statistical hypothesis for the
interaction that the lines are parallel and accept the alternative that they are not parallel.
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Part 1V Exercises:

You can rip this sheet off and hand it in with your answers. No coding is necessary.

1. One reason for looking at growth rate is that it can be used as a proxy for fitness.
If this is the case and growth is a good measure of the population growth rate under
different conditions (e.g. density), then what might you be able to conclude about
which phenotype of guppy should evolve in low and high density habitats?

2. Imagine you start off a populati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>